273 research outputs found

    Anisotropic Superconductivity in the Induced Pairing Model

    Full text link
    The model of local electron pairs and itinerant fermions coupled via charge exchange mechanism, which mutually induces superconductivity in both subsystems is studied for anisotropic pairing symmetry. The phase diagram is presented and the phase fluctuations effects are analyzed within the Kosterlitz-Thouless scenario.Comment: 4 pages, 2 figures. Physica B (in press), Proceedings of the International Conference on Strongly Correlated Electron Systems, Ann Arbor, Michigan, August 6-10, 200

    Superconductivity in Inhomogeneous Hubbard Models

    Full text link
    We present a controlled perturbative approach to the low temperature phase diagram of highly inhomogeneous Hubbard models in the limit of small coupling, t′t', between clusters. We apply this to the dimerized and checkerboard models. The dimerized model is found to behave like a doped semiconductor, with a Fermi-liquid groundstate with parameters ({\it e.g.} the effective mass) which are smooth functions of the Hubbard interaction, UU. By contrast, the checkerboard model has a nodeless d-wave superconducting state (preformed pair condensate, dd-BEC) for 0<U<Uc0 < U < U_c, which smoothly crosses over to an intermediate BCS-like superconducting phase (dd-BCS), also with no nodal quasi-particles, for ∣U−Uc∣<O(t′)|U - U_c| < {\cal O}(t^\prime), which gives way to a Fermi liquid phase at large U>Uc=4.58U > U_c = 4.58.Comment: 7 pages, a sign error in Eq.(3) has been corrected and its consequence has been discussed with updated figure

    Effects of Disorder on Superconductivity of Systems with Coexisting Itinerant Electrons and Local Pairs

    Full text link
    We study the influence of diagonal disorder (random site energy) of local pair (LP) site energies on the superconducting properties of a system of coexisting local pairs and itinerant electrons described by the (hard-core) boson-fermion model. Our analysis shows that the properties of such a model with s-wave pairing can be very strongly affected by the diagonal disorder in LP subsystem (the randomness of the LP site energies). This is in contrast with the conventional s-wave BCS superconductors, which according to the Anderson's theorem are rather insensitive to the diagonal disorder (i.e. to nonmagnetic impurities). It has been found that the disorder effects depend in a crucial way on the total particle concentration n and the LP level position DELTA_o and depending on the parameters the system can exhibit various types of superconducting behaviour, including the LP-like, intermediate (MIXED)and the 'BCS'-like. In the extended range of {n,DELTA_o} the superconducting ordering is suppressed by the randomness of the LP site energies and the increasing disorder induces a changeover from the MIXEDlike behaviour to the BCS-like one, connected with abrupt reduction of T_c and energy gap to zero. However, there also exist a definite range of {n,DELTA_o} in which the increasing disorder has a quite different effect: namely it can substantially enhance T_c or even lead to the phenomenon which can be called disorder induced superconductivity. Another interesting effect is a possibility of a disorder induced bound pair formation of itinerant electrons, connected with the change-over to the LP-like regime.Comment: 18 pages, 12 figure

    Real space inhomogeneities in high temperature superconductors: the perspective of two-component model

    Full text link
    The two-component model of high temperature superconductors in its real space version has been solved using Bogoliubov-de Gennes equations. The disorder in the electron and boson subsystem has been taken into account. It strongly modifies the superconducting properties and leads to local variations of the gap parameter and density of states. The assumption that the impurities mainly modify boson energies offers natural explanation of the puzzling positive correlation between the positions of impurities and the values of the order parameter found in the scanning tunnelling microscopy experiments.Comment: 19 pages, IOPP style include

    The effects of the next-nearest-neighbour density-density interaction in the atomic limit of the extended Hubbard model

    Full text link
    We have studied the extended Hubbard model in the atomic limit. The Hamiltonian analyzed consists of the effective on-site interaction U and the intersite density-density interactions Wij (both: nearest-neighbour and next-nearest-neighbour). The model can be considered as a simple effective model of charge ordered insulators. The phase diagrams and thermodynamic properties of this system have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigation of the general case taking into account for the first time the effects of longer-ranged density-density interaction (repulsive and attractive) as well as possible phase separations shows that, depending on the values of the interaction parameters and the electron concentration, the system can exhibit not only several homogeneous charge ordered (CO) phases, but also various phase separated states (CO-CO and CO-nonordered). One finds that the model considered exhibits very interesting multicritical behaviours and features, including among others bicritical, tricritical, critical-end and isolated critical points.Comment: 12 pages, 7 figures; final version, pdf-ReVTeX; corrected typos in reference; submitted to Journal of Physics: Condensed Matte
    • …
    corecore